

Randomized clinical trials, limitations and possible alternatives: The Dutch experience

Prof. Johannes (Hans) A. Langendijk, MD, PhD

Radiation Oncologist / Department Chair Department of Radiation Oncology University Medical Center Groningen Groningen The Netherlands

DANSKE KRÆFTFORSKNINGSDAGE 2022 25. & 26. AUGUST 2022, COMWELL KOLDING

Disclosures

	COI status	Names of companies / organizations
Post of executive / consultant	YES	Honorarium from IBA for consultancy and presentation at IBA symposia paid to UMCG Research BV Member of the Global Advisory Board IBA, Belgium Member of the RayCare Clinical Advisory Board, Sweden
Grant / Research funding	YES	Department of Radiation Oncology has research collaborations with Elekta, IBA, RaySearch, Siemens, Leoni and Mirada

Protons versus photons Beam properties

Penetration depth

Evidence-based medicine

Evidence-based medicine

CURRENT standard PHOTON therapy

Potential NEW standard PROTON therapy

Best available evidence?

 Best approach when protons are used for target dose escalation

Best available evidence?

• **Prevention** of radiationinduced side effects **?**

- Similar target dose
- Lower dose healthy tissues

Foresight Report

Dutch Academy of Arts and Sciences

RCT's mostly <u>not</u> suitable / feasible for testing new technologies

- Technological developments
- Technology-user interplay

www.knaw.nl/nl/actueel/publicaties/evaluation-of-new-technology-in-health-care

How to reduce toxicity?

NTCP-model

NTCP-model

Normal Tissue Complication
Probability

Model-based selection procedure

Model-based dose optimization

Δ **NTCP-profile** Biomarker expected benefit of protons

High benefit ΔNTCP-profile

Low benefit **ΔNTCP**-profile

Does **NOT** qualify for protons

Technology

Differences in technology specifications

Technological developments Proton therapy

IMPT Current standard proton technique

4 fixed beams

Proton Arc Therapy (PAT) New proton technique

Full Arc 360°

VMAT (photons) Current technique IMPT (protons) Current technique (since 2018) Step and shoot Arc (protons) New technique (Start 2022)

VMAT (photons)

IMPT (protons) Current technique (since 2018) Step and shoot Arc (protons) New technique (Start 2022)

Medical developments

Elective nodal irradiation in HPV+ oropharyngeal cancer

Current standard High dose: 70 Gy Elective dose: 54 Gy

Lower elective dose High dose: 70 Gy Elective dose: 40 Gy Deschuymer, et al. 2021

Unilateral neck only

High dose: **70** Gy Elective dose: **40** Gy *Ongoing trial*

Medical developments

Elective nodal irradiation in HPV+ oropharyngeal cancer

Elective dose: 40 Gy

Ongoing trial

High dose: **70** Gy Elective dose: **54** Gy

- Technological developments
- Medical developments

Technology

Technology-user interplay

Technology-user interplay

Current standard? IMRT (photon) treatment planning

- Planning comparison study
- Multicenter (n=15)
- One patient
 - One set of targets
 - One of OAR's

Courtesy: Wilco Verbakel

Best available evidence?

 How can IMRT be standard, if there is no standard IMRT?

Technology-user interplay

Technology-user interplay ← The HUMAN factor

Technology

Learning curve Proton therapy 2018-2021 (head and neck)

Prospective Data Registration Program UMCG

Consequences

- Technological developments
- Medical developments
- Technological specifications
- Technology-user interplay
- Learning effect

Positive RCT

Positive RCT Underlying *A*NTCP-values per patients

Positive RCT Underlying *A*NTCP-values per patients

∆NTCP threshold Based on current technology

\triangle **NTCP threshold**

Effect of small improvement in proton therapy performance

\triangle NTCP threshold

Early phase learning curve / medical developments (lower elective dose)

Technology-user interplay

ΔNTCP-profile Accounts for all components

- 1. Technological and medical developments
- 2. Technology-user interplay
- 3. Institutional performance
- 4. Individual patient characteristics ($\Delta dose \rightarrow \Delta NTCP$)

Model-based approach

- 1. Model-based selection
 - Identify patients who will benefit most from proton therapy in terms of complication risk reduction
- 2. Model-based validation
 - **Evaluate the benefit** protons when used to reduce complication risk

Model-based validation

Study design Model-based Clinical Evaluation

Model-based validation

Study design Model-based Clinical Evaluation

Model-based validation

Study design Model-based Clinical Evaluation

Learning Radiation Health Care System (ProTRAIT)

Summary and conclusions

- Evidence-based medicine ≠ RCT's
 - Translation RCT's hampered by:
 - Technological and medical developments
 - Technology-user interplay
- Model-based selection (ΔNTCP-profile) is robust for these effects and accounts for how Δdose translates into ΔNTCP
- Continuous learning system based on real-world data
 - Optimize and enrich Δ NTCP-profiles

Evidence-based medicine

Evidence-based medicine

Acknowlegements

Department of Radiation Oncology Anne van den Hoek, MD Miranda Kramer, MD PhD Tineke Meijer-van Zon, MD PhD Edwin Oldehinkel, MD Roel Steenbakkers, MD PhD

Prof. Stefan Both, PhD Jeffrey Free Hans Paul van der Laan, PhD Henriette van der Laan-Boomsma Dan Scandurra Arjen van der Schaaf, PhD Lisa van den Bosch, MD

Julius Center Utrecht Prof. Carl Moons, PhD Hans Reitsma, PhD Ewoud Schuit, PhD

Maastro

Prof. Andre Dekker, PhD Prof. Liesbeth Boersma, MD PhD

HollandPTC Prof. Marco van Vulpen, MD PhD Prof. Mischa Hoogeman, PhD

LUMC Prof. Coen Rasch, MD PhD

Erasmus MC Prof. Remi Nout, MD PhD

And many others

۷۷**KWF**

HORIZON 2020

