DANSKE KRAFTFORSKNINGSDAGE 2023

Muligheder og barrierer for kunstig
intelligens i haematologien —
implementering i sundhedsplatformen.

#DKD2023 Sli.do
#SamarbejdeOmKraeft #131525


mailto:Carsten.utoft.niemann@regionh.dk
http://www.rigshospitalet.dk/CLL-lab

Disclosures:

Danish Cancer Society, Novo Nordisk Foundation,
Copenhagen University Hospital, Persimune, Arvid

Research Support Nilsson’s Foundation, Abbvie, Janssen,
AstraZeneca, Alfred Benzon Foundation,
Octapharma

P.l. Janssen, AstraZeneca, Genmab, Beigene

Roche, Gilead, Janssen, Abbvie, Novartis, CSL
Consultancies Behring, AstraZeneca, Takeda, Octapharma,
Beigene, Eli Lilly, Genmab

Collaborators:
HOVON, Arnon Kater, Amsterdam
GCLLSG, Michael Hallek, Barbara Eichhorst, KoIn
Nordic CLLSG, Anders Osterborg, Richard Rosenquist, Karolinska, Stockholm
ERICLL.org, Paolo Ghia
EuroMRD, Christiane Pott
CLL-CLUE, Sigrid Skanland, Rikshospitalet, Oslo
Mathew Davids, DFCI, Boston
Adrian Wiestner, NHLBI, NIH
PERSIMUNE, Jens Lundgren, Rigshospitalet
Genetics, COVID, Sisse Ostrowski, Rigshospitalet, Henrik Hjalgrim, Danish Cancer Society @
novonordisk fonden

Danish Cancer Society



life cycle of mAl - for Physicians? Just hot air?

1-2 per year % CLL-IPI CLL 3-months
r -\ -\ Di agnos s post-diagnosis
= P d t 2-Year Predictive Window
nosis. infection ir
buti thr he ature Selection

Pah nt Timel I

J Watch and wait ' reatment
] ] bins. A
Clinic
&

Training

Modelling the distribution of LABKA values
r

aaaaaaaaa

>70% of patients

10,000 Features

Translational
studies Venetoolax Trial or follow up

B SaE Acalabrutinib
/’—\
\ seicnarg [ Randomization 20%
‘:'I::'i‘ o Watch & Wait

Lymph node
biopsy s
! Feces &
saliva
Bone marrow samples
. ’ .
e Low risk, low confidence 80%

biopsy
Where, and why?

What samples?




Pattern recognition needed for medical art!
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Pattern recognition — behind the scenes 1
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Pattern recognition — behind the scenes 2
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Pattern recognition — behind the scenes 3
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Pattern recognition — at the scene for the Physician
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Confidence of prediction (low/high): Low

Risk factor low 1:
Platelet count, change (1 year)
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Pattern recognition — monitoring ahead
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mAI — You are next to Implement

AN

Algorithm

Reliable predictive confidence/uncertainty
for trust in unseen conditions

Sufficient dimensionality for missingness
handling & re-training purposes in case of
data shifts

External validation benchmarks
Personalized risk factors for explainability
and monitoring

Specification of inputs / outputs for
harmonization

Provisions of summary statistics on
outcomes and input features for monitoring

EHR

Decision in which view/context should
the results from the algorithm be
presented

Process in place for presenting views
from external/integrated algorithm
Process for approval of

content/ presentation by clinical
healthcare council implemented
Process in place for copy/export of data
in near real-time to environment where
algorithm is running

Harmonization

¥ Ascertain definitions of variables and
outcomes are identical to those used
in algorithm development

v' Data dictionaries with many-to-one
mappings of variables name and
variable units

¥ Harmonization separate to and
precedes the algorithm script/s

Monitoring

Monitoring of performance degradation
using appropriate ranking and
discrimination metrics

Monitoring of data shifts using
appropriate metrics

Forward-looking setup that allows for
monitoring of multiple competing
algorithms and the subsequent selection
of algorithm with “highest-confidence”
prediction for each individual patient.
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